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Note 

Energy Conservation in Molecular Dynamics 

In molecular dynamics (MD) calculations of the classical mechanical trajectories 
of N particles, the energy, E, is not strictly conserved, but it fluctuates with time 
during the computation. The fluctuation is mainly caused by the short-range 
interactions and can be diminished decades by a new algorithm [ 11. Furthermore, 
many algorithms result in a (small) drift in energy, 6E, and this note deals with the 
problem of ensuring energy conservation in MD calculations. 

The simplest way to get rid of an energy drift is of cause to choose a sufficient 
small time increment, h, but this is often an unnecessary and expensive way to solve 
the problem. A much simpler way is to adjust the kinetic energy for the drift, which 
can be done during the calculation by making use of the fact that the heat capacity, 
c, = (BE/X),, is given by the time means, ( ). of the fluctuations in temperature, T 

(T2) - m2 
(T>’ =&(I+). 

The energy, produced per time step and per particle, 6E, is many decades smaller 
than the change in kinetic energy per step. It dissipates into the system and causes a 
corresponding small drift in the temperature, 6T, which can be obtained from (1) 
during the calculation as 

By a few scalings of the velocities during the MD computations one can constrain the 
system to constant energy by means of (1) and (2). 

The algorithm in [ 1 ] exhibits a negligible drift in energy for a traditional choice of 
time increment, h. However, for a larger time increment and/or at high temperatures 
one can spot [ I,3 ] a small drift in the energy which can be removed by (1) + (2) or 
it can be diminished a decade by the following procedure: In [ 1 ] the time-derivatives 
of the forces a;(t + h), a$t + h) between particle Nos. i and j are calculated from 
ai(f + h) and the predicted velocities rl,Jf + h). The velocities r:,,,(t + h) are 
calculated from a second-order formula (A2 in [ 11) and this formula is the Achilles’ 
heel in the algorithm which introduces the drift. Heyes and Singer (31 use a third- 
order Taylor expansion of the velocities from r:(t). It is, however, possible to use a 
corresponding fourth-order predictor without any increase in computer time or 
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storage, and this diminishes 6E a decade. The fourth-order term in the velocity, 
(l/4!) h4a;11(t), can be obtained from 

+ h3ay(t) = ai(t + h) - a,(t) - ha;(t) - + h2a;(t) + P(h4). (3) 

(It can also be calculated directly but this is more complicated.) The velocities at 
time t are correspondingly given by 

r;(t) = [ri(t + h) - ri(t - h)]/2h - + h2a;(t) - -$ h”a;(t) + F(P). (4) 

This procedure was tested on a Lennard-Jonesium at a high temperature fluid state 
(k7’/s = 2, pa3 = 0.75) and for the time increment h = 0.01(mo2/~)‘~2. The result is 
given in Table I. For smaller h or/and lower temperatures there is no drift in E. An 
energy drift of the magnitude given in Table I will normally not be observed due to 
the much larger statistical error caused by the finite size of the system and finite time 
in the MD simulations. 

Conservation of energy is a necessary condition for MD algorithm, but it is not a 
sufficient criterion. A simple third-order Verlet-algorithm [4] has no drift in the 
energy even for large time increments, although the energy fluctuates from step to 
step. This algorithm conserves the mean energy because it is symmetrical with respect 
to time and therefore reversible (dE = T dS - p dV, and dS = 0 and dV = 0). But it 
does not lead to the correct trajectories for large h which can be demonstrated by 
calculating the root mean square deviation (r.m.s.) in the end positions of the 
particles after an integration time, r, obtained for different time increments. Already 
after 10 steps with h = 0.01 the end positions differed from the end positions obtained 
as 40 steps with h = 0.0025. The r.m.s. was 1.0 X lo--‘a for the Verlet-algorithm and 
about 30 times less for [ 11. A factor ~30 was also obtained by integrating 20 time 
steps with h = 0.005; the r.m.s. was 2.4 X 10P40, and 7.3 x 10m60, respectively. 

TABLE I 

Algorithm [I], 
r;.,A + h) 8Ej~ 

A2in [l] f1.0 x lo-” 
3-order Taylor expansion -3.9 x lo-’ 
4-order Taylor expansion +1.0x 1ome 
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